Controllable organization and high throughput production of recoverable 3D tumors using pneumatic microfluidics

Controllable organization and high throughput production of recoverable 3D tumors using pneumatic microfluidics

  一种基于气动的微流控芯片,用于三维肿瘤形成与收集。

Introduction

  三维肿瘤如多细胞肿瘤球已经引发了癌症研究者的大量兴趣并应用于广泛的抗肿瘤药物评估研究。归因于它们在模拟体内肿瘤微环境上通过复制营养和信号梯度及移除在人工表面和凝胶上的非自然吸附所增加的精度。

  然而,关于三维肿瘤形成和维持仍存有挑战,微尺度的细胞和流体操纵以及溶液交换目前阻碍了经过充分验证的肿瘤组织模型的广泛使用。过去的三维肿瘤培养方法存在单调冗长劳动密集以及在大量生产上受限的缺点。因此需要新的简单的、受欢迎的方法以大量产生均匀的三维肿瘤。

  微流控芯片以其对微流控灌注和肿瘤细胞的时空控制上出众表现被认为是一个有前景的平台。然而,用于芯片上控制培养/形成通量后分析恢复仿生三维肿瘤以扩大微流控技术在肿瘤表征中的应用范围的微操作线尚未完全实现。

  作者提出了用于一系列三维肿瘤顺序控制包括细胞定位、三维肿瘤形成、在线分析和通过含设计好的气动微结构(PμSs)的微流控芯片进行动态微操作来回收三维肿瘤的一个简单、通用且可复制的方法,并且完成了一次实时通过纳米医疗靶向肿瘤的原型验证应用。

Fig. 1 Microfluidic device with second-generation pneumatic microstructure (PμS) arrays for the controllable production of 3D tumors

  • (A)左图为微流控装置。右图显示了微腔中相对应的PμS,每个腔室有45个PμSs。
  • (B)PμS的设计(上图)和装置的截面图(下图)。
  • (C)PμS阵列操作用于精确细胞定位与微腔中高通量的三维肿瘤形成与维持的示意图。

Fig. 2 PμS-assisted localization of tumor cells in the microchamber in a high throughput manner

  • (A)图像展示了PμS开(左)、关(右)切换。侧视图和俯视图分别位于上中部和下部。放大的图像(左中)是一个PμS的侧方展示,连接通道装载了红色染料,清楚地展示了两个部分的高度差。椭圆虚线区(右上和右下)表明PμS接触到微腔顶部。驱动PμS的压力为20 psi。
  • (B)微腔中PμS阵列捕获的U251细胞光学显微图。
  • (C)捕获的U251细胞数。C1-C8代表不同的微腔。
  • (D)对应于(B)的被捕获U251细胞荧光染色图。细胞被DiI(红)预标记以追踪细胞。
  • (E)Pluronic F127预修饰的PμS微腔精确细胞定位的评估。数据显示剩余在腔室中非特异性捕获区域的多余细胞数。

Fig. 3 Array-like 3D tumor formation

  • (A)培养10天后,阵列样的U251肿瘤维持在驱动的PμS阵列中的光学图像。
  • (B)培养U251肿瘤10天后,Ki67(红色)和核(蓝色)荧光染色图像。右上图显示相关于细胞增殖的Ki67蛋白质的荧光强度分布。
  • (C)培养10天后,MCF-7肿瘤阵列的光学图像。
  • (D)培养5天后,HepG2肿瘤阵列的光学图像。

Fig. 4 Real-time assessment of both the size and shape of U251, HepG2 and MCF-7 tumors

  U251、HepG2和MCF-7肿瘤的尺寸和形状的实时评估。三维肿瘤的面积、半径比和圆度被用来确定结构动力学。

Fig. 5 Real-time recovery of 3D tumors

  • (A)通过简单的关闭PμS开关,三维肿瘤回收的示意图。
  • (B)定量三维肿瘤的回收率。
  • (C)培养10天后回收的U251肿瘤的光学图像。
  • (D)培养7天后回收的HepG2肿瘤的光学图像。
  • (E)培养10天后回收的MCF-7肿瘤的SEM图像。

Fig. 6 Targeted nanotherapy of U251 tumors

  • (A)荧光图显示孵化2小时后,香豆素6装载的0%FD-NP(叶酸修饰的杂化聚合物纳米粒子)在10天的U251肿瘤中的穿透。注:应该有一点绿的,详见PDF,这图看不出来。
  • (B)荧光图显示孵化2小时后,香豆素6装载的50%FD-NPs在10天的U251肿瘤中的穿透。
  • (C)定量分析细胞摄取香豆素6装载的0%FD-NPs和50%FD-NPs在三维肿瘤中的量。
  • (D)紫杉醇装载的0%FD-NPs处理4天的U251肿瘤的FDA/PI染色荧光图。
  • (E)紫杉醇装载的50%FD-NPs处理4天的U251肿瘤的FDA/PI染色荧光图。
  • (F)使用紫杉醇装载的0%FD-NPs和50%FD-NPs处理的三维肿瘤正则化的大小动力学。
  • (G)使用紫杉醇装载的50%FD-NPs处理1天后回收的U251肿瘤的光学图像,提示这种回收能力可以用于接下来的流式细胞术

Fig. 7 Flow cytometry analysis of apoptosis by double staining with Annexin V-FITC and PI

  流式细胞术测试经过紫杉醇装载的0%FD-NPs和50%FD-NPs处理4天后的U251细胞。同0%FD-NPs相比,50%FD-NPs导致了更高比例的annexin-V+(膜联蛋白-V)/PI+细胞;同时,annexin-V+/PI-细胞比例增加意味着更高比例的三维肿瘤细胞开始凋亡。

有关此处凋亡检测,科普

Conclusion

  提出了一种气动微结构的微流控芯片,以高通量的形式产生三维肿瘤。

  • 建立了一种芯片上的操作线包括一步的细胞定位、阵列样形成和实时分析多种肿瘤。
  • 通过动态开关气动微结构可以容易的回收肿瘤产物。
  • 证明了其在评估靶向纳米治疗的应用。

Reference

Liu W, Wang J-C, Wang J. Controllable organization and high throughput production of recoverable 3D tumors using pneumatic microfluidics[J]. Lab on a Chip, 2015, 15(4): 1195–1204.

评论

3D cell culture 3D cell culturing 3D cell microarrays 3D culture 3D culture model 3D printing 3D spheroid 3D tumor culture 3D tumors 3D vascular mapping ACT ADV AUTODESK Abdominal wall defects Acoustofluidics Adipocyte Adipogenesis Adoptive cell therapy AirPods Alginate Anticancer Anticancer agents Anticancer drugs Apple Apriori Association Analysis August AutoCAD Autodock Vina Bio-inspired systems Biochannels Bioengineering Bioinspired Biological physics Biomarkers Biomaterial Biomaterials Biomimetic materials Biomimetics Bioprinting Blood purification Blood-brain barrier Bone regeneration Breast cancer Breast cancer cells Breast neoplasms CM1860 CRISPR/Cas9 system CSS CTC isolation CTCs Cancer Cancer angiogenesis Cancer cell invasion Cancer immunity Cancer immunotherapy Cancer metabolism Cancer metastasis Cancer models Cancer screening Cancer stem cells Cell adhesion Cell arrays Cell assembly Cell clusters Cell culture Cell culture techniques Cell mechanical stimulation Cell morphology Cell trapping Cell-bead pairing Cell-cell interaction Cell-laden gelatin methacrylate Cellular uptake Cell−cell interaction Cervical cancer Cheminformatics Chemotherapy Chimeric antigen receptor-T cells Chip interface Circulating tumor cells Clinical diagnostics Cmder Co-culture Coculture Colon Colorectal cancer Combinatorial drug screening Combinatorial drug testing Compartmentalized devices Confined migration Continuous flow Convolutional neural network Cooking Crawler Cryostat Curved geometry Cytokine detection Cytometry Cytotoxicity Cytotoxicity assay DESeq DNA tensioners Data Mining Deep learning Deformability Delaunay triangulation Detective story Diabetic wound healing Diagnostics Dielectrophoresis Differentiation Digital microfluidics Direct reprogramming Discrimination of heterogenic CTCs Django Double emulsion microfluidics Droplet Droplet microfluidics Droplets generation Droplet‐based microfluidics Drug combination Drug efficacy evaluation Drug evaluation Drug metabolism Drug resistance Drug resistance screening Drug screening Drug testing Dual isolation and profiling Dynamic culture Earphone Efficiency Efficiency of encapsulation Elastomers Embedded 3D bioprinting Encapsulation Endothelial cell Endothelial cells English Environmental hazard assessment Epithelial–mesenchymal transition Euclidean distance Exosome biogenesis Exosomes Experiment Extracellular vesicles FC40 FP-growth Fabrication Fast prototyping Fibroblasts Fibrous strands Fiddler Flask Flow rates Fluorescence‐activated cell sorting Functional drug testing GEO Galgame Game Gene Expression Profiling Gene delivery Gene expression profiling Gene targetic Genetic association Gene‐editing Gigabyte Glypican-1 GoldenDict Google Translate Gradient generator Gromacs Growth factor G‐CSF HBEXO-Chip HTML Hanging drop Head and neck cancer Hectorite nanoclay Hepatic models Hepatocytes Heterotypic tumor HiPSCs High throughput analyses High-throughput High-throughput drug screening High-throughput screening assays High‐throughput methods Histopathology Human neural stem cells Human skin equivalent Hydrogel Hydrogel hypoxia Hydrogels ImageJ Immune checkpoint blockade Immune-cell infiltration Immunoassay Immunological surveillance Immunotherapy In vitro tests In vivo mimicking Induced hepatocytes Innervation Insulin resistance Insulin signaling Interferon‐gamma Intestinal stem cells Intracellular delivery Intratumoral heterogeneity JRPG Jaccard coefficient JavaScript July June KNN Kidney-on-a-chip Lab-on-a-chip Laptop Large scale Lattice resoning Leica Leukapheresis Link Lipid metabolism Liquid biopsy Literature Liver Liver microenvironment Liver spheroid Luminal mechanics Lung cells MOE Machine Learning Machine learning Macro Macromolecule delivery Macroporous microgel scaffolds Magnetic field Magnetic sorting Malignant potential Mammary tumor organoids Manhattan distance Manual Materials science May Mechanical forces Melanoma Mesenchymal stem cells Mesoporous silica particles (MSNs) Metastasis Microassembly Microcapsule Microcontact printing Microdroplets Microenvironment Microfluidic array Microfluidic chips Microfluidic device Microfluidic droplet Microfluidic organ-on-a chip Microfluidic organ-on-a-chip Microfluidic patterning Microfluidic screening Microfluidic tumor models Microfluidic-blow-spinning Microfluidics Microneedles Micropatterning Microtexture Microvascular Microvascular networks Microvasculatures Microwells Mini-guts Mirco-droplets Molecular docking Molecular dynamics Molecular imprinting Monolith Monthly Multi-Size 3D tumors Multi-organoid-on-chip Multicellular spheroids Multicellular systems Multicellular tumor aggregates Multi‐step cascade reactions Myeloid-derived suppressor cells NK cell NanoZoomer Nanomaterials Nanoparticle delivery Nanoparticle drug delivery Nanoparticles Nanowell Natural killer cells Neural progenitor cell Neuroblastoma Neuronal cell Neurons Nintendo Nissl body Node.js On-Chip orthogonal Analysis OpenBabel Organ-on-a-chip Organ-on-a-chip devices Organically modified ceramics Organoids Organ‐on‐a‐chip Osteochondral interface Oxygen control Oxygen gradients Oxygen microenvironments PDA-modified lung scaffolds PDMS PTX‐loaded liposomes Pain relief Pancreatic cancer Pancreatic ductal adenocarcinoma Pancreatic islet Pathology Patient-derived organoid Patient-derived tumor model Patterning Pearl powder Pearson coefficient Penetralium Perfusable Personalized medicine Photocytotoxicity Photodynamic therapy (PDT) Physiological geometry Pluronic F127 Pneumatic valve Poetry Polymer giant unilamellar vesicles Polystyrene PowerShell Precision medicine Preclinical models Premetastatic niche Primary cell transfection Printing Protein patterning Protein secretion Pubmed PyMOL Pybel Pytesseract Python Quasi-static hydrodynamic capture R RDKit RNAi nanomedicine RPG Reactive oxygen species Reagents preparation Resistance Review Rod-shaped microgels STRING Selective isolation Self-assembly Self-healing hydrogel September Signal transduction Silk-collagen biomaterial composite Similarity Single cell Single cells Single molecule Single-cell Single-cell RNA sequencing Single‐cell analysis Single‐cell printing Size exclusion Skin regeneration Soft lithography Softstar Spheroids Spheroids-on-chips Staining StarBase Stem cells Sub-Poisson distribution Supramolecular chemistry Surface chemistry Surface modification Switch T cell function TCGA Tanimoto coefficient The Millennium Destiny The Wind Road Thin gel Tissue engineering Transcriptome Transfection Transient receptor potential channel modulators Tropism Tubulogenesis Tumor environmental Tumor exosomes Tumor growth and invasion Tumor immunotherapy Tumor metastasis Tumor microenvironment Tumor response Tumor sizes Tumor spheroid Tumor-on-a-chip Tumorsphere Tumors‐on‐a‐chip Type 2 diabetes mellitus Ultrasensitive detection Unboxing Underlying mechanism Vascularization Vascularized model Vasculature Visual novel Wettability Windows Terminal Word Writing Wuxia Xenoblade Chronicles Xin dynasty XuanYuan Sword Youdao cnpm fsevents miR-125b-5p miR-214-3p miRNA signature miRanda npm
Your browser is out-of-date!

Update your browser to view this website correctly. Update my browser now

×